Анализаторы растворенного кислорода «Эксперт-009»

№ 63403-16 в Госреестре СИ РФ Свидетельство об утверждении СИ RU.C.31.083.A № 61711 Декларация соответствия EAЭC N RU Д-RU.AH03.B.11166/19

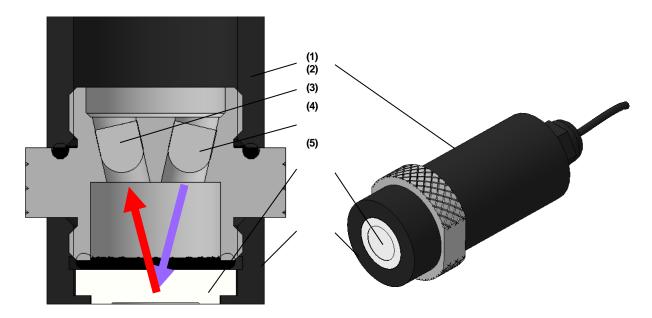
Новейшая разработка — анализатор растворённого кислорода «**Эксперт-009**» с оптическим датчиком, который обладает рядом преимуществ по сравнению с амперометрическим датчиком Кларка:

- датчик практически не требует обслуживания;
- отсутствует мембрана, не нужен электролит;
- не отравляется сероводородом и другими серосодержащими соединениями, можно измерять даже непосредственно в сточной воде и аэротенках;
- отсутствие мешающего влияния матрицы раствора;
- невосприимчивость датчика к давлению (возможно измерение непосредственно в сосуде под давлением или трубопроводе через прозрачный иллюминатор, не нарушая герметичность);
- легко заменяемые прочные сменные наконечники с ресурсом жизни 1 год¹;
- возможность измерения в неводных средах².

Прибор выпускается в переносном исполнении. Имеется встроенный аккумулятор, позволяющий работать автономно в течение нескольких недель. Возможна передача текущих показаний на ПК или мобильное устройство по RS-232, USB или Bluetooth.

Возможно подключение к прибору электрохимического датчика ДКТП-02.

Принцип работы «Эксперт-009»


Чувствительным элементом датчика является специальный фосфоресцирующий краситель. Под действием кислорода происходит тушение фосфоресценции, которое анализатор пересчитывает в значение концентрации. Данный метод является чрезвычайно высокоселективным благодаря уникальным свойствам молекулы кислорода.

Новый анализатор с оптическим датчиком лишен недостатков традиционных методов (йодометрического титрования по Винклеру и амперометрического измерения с датчиком Кларка). Практически отсутствуют мешающие влияния окислителей, восстановителей, взвешенных и окрашенных веществ.

Оптический датчик для определения растворённого кислорода

¹ 1 год при t = 20 C и среднем времени измерения 3 часа в день, 247 рабочих дней. Реальный ресурс зависит от условий эксплуатации (температуры среды и продолжительности измерения).

² Для некоторых неводных растворителей может потребоваться дополнительное защитное покрытие чувствительного элемента.

Измеритель состоит из компактного датчика в корпусе (1) расположены источник света (3), фотоприемник (2). Сменная насадка (4) с нанесенным красителем, фиксируется колпачком (5). а также измерительного преобразователя.

Последовательность стадий процесса измерения следующая:

- 1. возбуждение молекул индикаторного красителя светом;
- 2. переход красителя в основное состояние одним из двух способов:
 - в виде фосфоресценции при отсутствии кислорода;
 - передача энергии молекуле кислорода (тушение фосфоресценции), сопровождающаяся её переходом в синглетное состояние.

Чем больше содержание кислорода, тем быстрее происходит тушение фосфоресценции красителя, тем меньше время жизни его возбуждённого состояния. Данная зависимость описывается уравнением Штерна-Фольмера. С его помощью прибор рассчитывает концентрацию кислорода. При этом автоматически вносится температурная коррекция.

Технические и метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массовой концентрации растворенного кислорода (с O_2), мг/дм 3	0.2 20
Пределы допускаемой относительной погрешности анализаторов при измерении массовой концентрации растворенного кислорода при температуре анализируемой среды (25±1)°С	±5 %
Пределы допускаемой относительной погрешности анализаторов при измерении массовой концентрации кислорода при температуре анализируемой среды от 5°C до 50°C, кроме температуры (25±1)°C	±10 %
Диапазон измерений температуры анализируемого раствора, °С	0 50
Диапазон температурной компенсации измерительной системы, °С	5 50
Пределы допускаемой абсолютной погрешности измерений температуры анализируемого раствора, °C	± 0,5

Наименование характеристики	Значение
Время установления рабочего режима после включения, с, не более	30
Продолжительность непрерывной работы, ч, не менее	8
Номинальное напряжение питания, В (встроенный аккумулятор, с индикацией разрядки)	12
Потребляемая мощность, Вт, не более	6
Габаритные размеры измерительного преобразователя, мм, (длина×ширина×высота), не более - переносное исполнение - стационарное исполнение	200×110×70 250×340×100
Масса, кг, не более - переносное исполнение - стационарное исполнение	0.95 1.10
Условия эксплуатации: - температура окружающей среды, °С - относительная влажность при 25°С, %, не более - атмосферное давление, кПа мм рт.ст температура анализируемых растворов, °С	5 40 90 84 106.7 630 800 0 50
Показатели надежности: - средний срок службы, лет, не менее - средняя наработка на отказ, ч, не менее	10 5000