ДАТЧИКИ ИЗМЕРЕНИЯ ТОКА НА ЭФФЕКТЕ ХОЛЛА ДТХ-Т

ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ
 ПО ЭКСПЛУАТАЦИИ

1. ВВЕДЕНИЕ	3
2. НАЗНАЧЕНИЕ	3
3. ТЕХНИЧЕСКИЕ ДАННЫЕ	3
4. УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ	4
5.УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	4
6. ПОРЯДОК УСТАНОВКИ И ПОДГОТОВКА К РАБОТЕ	5
7. ИЗМЕРЕНИЕ ПАРАМЕТРОВ И РЕГУЛИРОВКА	5
8. ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
9. МАРКИРОВКА	6
10. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКА	6

1. ВВЕДЕНИЕ

1.1. Техническое описание и инструкция по эксплуатации предназначены для ознакомления с устройством, принципом работы и основными правилами эксплуатации датчика измерения тока ДТХ-Т на эффекте Холла.

2. НАЗНАЧЕНИЕ

2.1. Датчик измерения тока предназначен для измерения постоянного, переменного и импульсного токов с гальванической развязкой силовой цепи и цепей контроля. Датчик может быть использован в различных цепях телеметрии.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

Параметры	ДТХ-Т	ДТХ-Т	ДТХ-Т	ДТХ-Т	ДТХ-Т
• •	(50A)	(100A)	(150A)	(200A)	(300A)
Диапазон измеряемых токов, А	0-50	0-100	0-150	0-200	0-300
Номинальный выходной ток, А*	25*10-3	50*10-3	75*10 ⁻³	50*10-3	75*10 ⁻³
АЧХ ДТХ-е на уровне ± 3дб, не хуже, Гц	0-50000				
Основная приведенная погрешность					
измерения, % не более	1				
Нелинейность выходной					
характеристики, % не более	0,1				
Начальный выходной ток при нулевом					
измеряемом токе мА, не более	0,12	0,25	0,37	0,25	0,37
Напряжение питания, В	±(15 ±5%)				
Ток потребления датчиков по цепи					
питания в режиме холостого хода, мА**	10				
Диапазон температур, °С	-20÷70				

^{*-}Положительное значение выходного тока достигается при совпадении направления измеряемого тока со стрелкой, нанесенной на корпусе датчика.

Іизм- измеряемый ток, Іхх – ток потребления холостого хода

N=2000 для ДТХ-Т(50A), ДТХ-Т(100A), ДТХ-Т(150A) и N=4000 для ДТХ-Т(200A), ДТХ-Т(300A).

^{**-} Ток потребления датчиков по цепи питания в режиме измерения = Ixx+Iизм / N; где

4. УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ.

- 4.1. ДТХ-Т состоит из замкнутого магнитопровода с зазором и обмоткой датчика Холла и платы электронной обработки сигнала.
- 4.2. Магниточувствительный датчик Холла закреплен в зазоре магнитопровода и соединен с входом электронного усилителя.
- 4.3. При протекании измеряемого тока по шине, охватываемой замкнутым магнитопроводом, в нем находится магнитное поле. Датчик Холла, реагирующий на возникающее магнитное поле, вырабатывает напряжение Холла, пропорциональное измеряемому току.
- 4.4.Выходной сигнал с датчика усиливается электронным усилителем и подается в компенсационную обмотку.
- 4.5. По обмотке течет компенсационный ток, пропорциональный измеряемому току. Возникающее при этом магнитное поле компенсационной обмотки компенсирует магнитное поле измеряемого тока, и датчик Холла работает как нуль-орган.
- 4.6. Потребитель нагружает токовый выход датчика таким сопротивлением, чтобы получить напряжение, удобное для дальнейшей обработки. Например, чтобы получить выходное напряжение 5 В, следует использовать нагрузочный резистор для ДТХ-Т(50A) 200 Ом, для ДТХ-Т(100A) и ДТХ-Т(200A) 100 Ом, для ДТХ-Т(150A) и ДТХ-Т(300A)—66,67 Ом.

<u>Примечание</u>: Для ДТХ-Т(50A), ДТХ-Т(100A), ДТХ-Т(150A), ДТХ-Т(200A), ДТХ-Т(300A) сопротивление нагрузки не менее 5 Ом.

5.УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ.

5.1. Датчик работает при малых электрических напряжениях, поэтому требования безопасности при работе с ним не предъявляются.

6. ПОРЯДОК УСТАНОВКИ И ПОДГОТОВКА К РАБОТЕ

- 6.1. Конструкция датчиков предусматривает их крепление за отверстия в корпусе или на дин-рейку с помощью переходной планки (приобретается отдельно).
- 6.2. Закрепить провода питания и выхода датчика в ответной части разъёма, подключить разъём.
- 6.3. Пропустить шину с измеряемым током через отверстие в корпусе датчика.
- 6.4. Включение ДТХ-Т осуществляется подачей питания.

ВНИМАНИЕ! 1. Нагрузочное сопротивление должно быть подключено к датчику до подачи питания.

7. ИЗМЕРЕНИЕ ПАРАМЕТРОВ И РЕГУЛИРОВКА

- 7.1. Измерение параметров датчика производить согласно схеме включения на рис. 1
- 7.2. После включения питания выдержать 10 минут и измерить выходной сигнал: $I_{\text{вых}}$, не более, мА:- ДТХ-Т(50A) 0,12; ДТХ-Т(150A) и ДТХ-Т(300A) 0,37; ДТХ-Т(100A) и ДТХ-Т(200A) 0,25.
- 7.3. Пропустить через датчик ток, равный I ном и измерить выходной сигнал:

	Івых, мА	Ивых , В	Rн, Ом
ДТХ-Т(50А)	25	5	200
ДТХ-Т(100А)	50	5	100
ДТХ-Т(150А)	75	5	66,67
ДТХ-Т(200А)	50	5	100
ДТХ-Т(300А)	75	5	66,67

7.4. Настроить датчик измерения тока по необходимому выходному напряжению можно подбором нагрузочного сопротивления. Это сопротивление можно изменять в пределах от 5 Ом до 180 Ом для ДТХ-Т(100A), от 5 до 360 Ом для ДТХ-Т(50A), от 5 до 150 Ом для ДТХ-Т(150A); от 10 до 180 Ом для ДТХ-Т(200A), от 10 до 120 Ом для ДТХ-Т(300A).

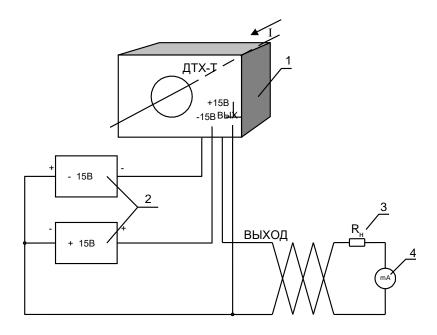
8. ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ И

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. Техническое состояние датчика определяется измерением его параметров.
- 8.2. ДТХ-Т является неремонтопригодным изделием и, в случае обнаружения неисправного датчика, его необходимо заменить на годный.
- 8.3. В процессе работы датчиков техническое обслуживание не требуется.

9. МАРКИРОВКА

- 9.1. Маркировка наносится на корпус датчика.
- 9.2. Маркировка содержит:
- обозначение датчика,
- код изготовителя,
- назначение выводов датчика,
- номер датчика.


10. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКА

- 10.1. Датчик после изготовления заваривается в индивидуальный полиэтиленовый пакет вместе с паспортом.
- 10.2. Условия хранения датчиков, обеспечивающие установленную в ТУ сохраняемость, должны соответствовать следующим требованиям:
 - для отапливаемых хранилищ температура окружающего воздуха от 5 до 35 °C, относительная влажность окружающего воздуха до 85% при температуре 20°C.
- 10.3. Транспортирование датчиков в упаковке предприятияизготовителя производится любым транспортом на любое расстояние без ограничения скорости.
- 10.4. Климатические условия транспортирования не должны выходить за границы заданных предельных условий:

Гемпература °С	-50
÷50	
относительная влажность при 25 °C,	98

<u>ВНИМАНИЕ</u>. Штатный режим работы датчика предусматривает включение датчика в измерительную цепь только после подачи питания на датчик. Если возможен режим включения датчика тока в измерительную цепь до подачи напряжения питания, то к клеммам питания датчика желательно предварительно присоединить конденсаторы емкостью 47 мкФ 25В.

Рис.1 СХЕМА ВКЛЮЧЕНИЯ ДАТЧИКА ТОКА ДТХ-Т

- Датчик измерения тока ДТХ-Т 1.
- 2. Источники питания
- Нагрузочный резистор класса точности 0,05% Миллиамперметр класса точности 0,1 $^{(*)}$ 3.
- 4.
- Включение в цепь миллиамперметра необязательно (*)