Keysight M8196A # 92 GSa/s Arbitrary Waveform Generator Preliminary Data Sheet M8196A in a 2-slot AXIe chassis ## M8196A at a Glance The Keysight Technologies, Inc. M8196A arbitrary waveform generator (AWG) has the highest sample rate and the widest bandwidth in its class with up to four synchronized channels operating simultaneously on one module. - Sample rate up to 92 GSa/s (on up to 4 channels simultaneously) - Analog bandwidth: 32 GHz (typical) - 8 bits vertical resolution - 512 kSa of waveform memory per channel - 1, 2, or 4 differential channels per 1-slot AXIe module (number of channels is software upgradeable) - Amplitude up to 1 Vpp(se) (2 Vpp(diff.)), voltage window -1.0 to +2.5 V - t_{rise/fall} (20%/80%) < 9 ps (typical) - Ultra-low intrinsic jitter - Built-in frequency and phase response calibration for clean output signals ## Coherent Optical Applications 200 G, 400 G and 1 Terabit applications demand a new class of generators that provide high speed, precision and flexibility at the same time. The M8196A is the ideal solution to test different optical systems from discrete components like optical power amplifiers to more complex dual polarization systems like optical modulators or optical receivers. With up to 4 channels per 1-slot AXIe module, each running at up to 92 GSa/s with 32 GHz of analog bandwidth, it allows dual polarization testing in a small form factor and the generation of complex signals with multiple modulation schemes (PAM-4,PAM-8, QPSK, nQAM) up to an outstanding speed of 64 GBaud and beyond. Compensation for distortions generated e. g. by cables and amplifiers can be realized by embedding/de-embedding the S-parameters of the respective circuits or by performing an in-situ calibration using the Keysight Technologies vector signal analysis software. Combined with the 81195A optical modulation generator software, the M8196A makes it easy to generate optical impairments (e.g. PMD) for stressing the optical receiver over multiple test scenarios. Figure 1. QPSK signal with emulated phase noise ## Multi-Level/Multi-Channel Digital Signals The M8196A is also ideally suited to address multi-level/multi-channel interfaces using any standard or custom data format, for example high-speed backplane connections using PAM-4 or PAM-8 format, as well as technologies in the mobile application space. The flexibility of the waveform generation at its highest speeds, combined with excellent intrinsic jitter performance makes the M8196A a truly future-proof instrument. At data rates of multiple Gb/s, the effect of cables, board traces, and connectors etc. has to be taken into account in order to generate the desired signal at the test point of the device under test. The M8196A incorporates digital pre-distortion techniques for frequency- and phase-response compensation of the AWG output and any external circuit to generate the desired signal at the device under test. Channels can be embedded/de-embedded if the S-parameters of the respective circuits are provided. In conjunction with the 81195A optical modulation generator software various kinds of distortions can be added to the signal. With its high channel density the M8196A is well-suited to affordably and precisely stimulate multi-lane high-speed interfaces. Figure 2. PAM-4 signal at 56 GBaud ## Physics, Chemistry and Electronics Research With the M8196A AWG it is possible to generate any arbitrary waveform you can mathematically describe and download it directly to the M8196A. This includes ultra-short yet precise pulses down to 20 ps pulse width or extremely short, yet wideband RF pulses and chirps which are needed to investigate in live time chemical reactions and elementary particle excitation. Figure 3. Emulation of chirps ## Configuration ## Product | Product number | Description | Comment | |----------------|--|---------| | M8196A-001 | Arbitrary waveform generator module
1 channel, 92 GSa/s, 512 kSa per channel | | | M8196A-002 | Arbitrary waveform generator module 2 channels, 92 GSa/s, 512 kSa per channel Must choose one: 001, 002, or | | | M8196A-004 | Arbitrary waveform generator module
4 channels, 92 GSa/s, 512 kSa per channel | | | M8196A-BU2 | Bundle consisting of one M9502A
2-slot AXIe chassis with USB option | | | M8196A-BU3 | Bundle consisting of one M9502A 2-slot AXIe chassis with USB option and one M9536A AXIe embedded PC controller | | ## Upgrade options | Product number | Description | Comment | |----------------|---------------------------------------|-----------------------------------| | M8196AU-U02 | Upgrade from 1 channel to 2 channels | User-installable software license | | M8196AU-U04 | Upgrade from 2 channels to 4 channels | User-installable software license | ## Accessories In order to be operational, an AXI chassis plus either an embedded controller or external PC or laptop are required in addition to one or more M8196A modules: (See http://www.keysight.com/find/AXIe for more details) | Product number | Description | Comment | |----------------|---|---| | M9502A-U20 | 2-slot AXIe chassis with USB Option | Choose chassis size: 2 slots or 5 slots | | M9505A-U20 | 5-slot AXIe chassis with USB Option | CHOOSE CHASSIS SIZE. Z SIDIS OF 3 SIDIS | | M9536A | AXIe embedded controller | | | 8121-1243 | Cable assembly USB Type A-MINI B | Choose either M9536A or 8121-1243 | | M9048A | PCIe® desktop card adapter Gen 2 x8 | | | Y1202A | PCIe cable for M9048A desktop adapter | or | | M9045B | PCIe laptop card adapter Gen 1 x4 M9048A+Y1202A or M9045B+Y12 | | | Y1200B | PCIe cable for M9045B laptop adapter | | | M8196A-810 | Matched cable pair for M8196A AWG, 2.4 mm | | | M8196A-820 | Termination 50-Ohm, 2.4 mm | | ## Software | Product number | Description | Comment | |----------------|---------------------------------------|-----------------------------------| | N6171A-M02 | MATLAB license (standard) | User-installable software license | | N6171A-M03 | MATLAB license (extended) | User-installable software license | | 81195A | Optical modulation generator software | User-installable software license | | 81195A-OSP | Optical signal properties | User-installable software license | ## Specifications ## General characteristics | Sample rate | 82.24 to 93.4 GSa/s | |--------------------------------------|---| | DAC resolution | 8 bits | | Number of channels per M8196A module | 1, 2, or 4 (corresponds to Opt. 001, 002, and 004) Additional number of channels can be enabled via user-installable software license | ## Sample memory | Sample memory | 512 kSa per channel. The waveforms in each channel can have different | |---------------|---| | | length | ## Out 1, 2, 3, 4 | Output type | Single-ended ¹ or differential | |---|---| | Analog bandwidth (3 dB, excl. sin(x)/x roll-off) | 32 GHz (typ) | | Rise/fall time (20%/80%) ^{2, 3} | 9 ps (typ) | | Impedance | 50 Ω (nom) | | Amplitude | 250 mV $_{\rm pp(se)}$ to 1 V $_{\rm pp(se)}$ into 50 Ω 500 mV $_{\rm pp(diff)}$ to 2 V $_{\rm pp(diff)}$ into 50 Ω | | Amplitude resolution | 400 μV (nom) | | DC amplitude accuracy ³ | ±(2.5% +10 mV) (typ) | | Voltage window | –1.0 to +2.5 V single-ended into 50 Ω | | Offset resolution | 400 μV (nom) | | DC offset accuracy ⁴ | ±20 mV (typ) | | Differential offset | Adjustable | | Termination voltage window | –1.5 to + 3.5 V | | | (low level –500 mV) to (high level + 500 mV) | | Termination voltage resolution | 300 μV (nom) | | Skew between any pair of outputs | $0 \text{ ps} \pm 7 \text{ ps} \text{ (typ)}$ | | Skew between normal and complement | 0 ps ± 3 ps (nom) | | Harmonic distortions ^{5,6} | | | 2nd harmonic | tbd | | 3rd harmonic | tbd | | Two-tone IMD ⁶ | tbd | | SFDR ⁶ (excluding harmonic distortions) | | | In-band | tbd | | Adjacent band | tbd | | Amplitude flatness (at RF output connector, compensated for sin(x)/x) | tbd | | Connector type | 2.4 mm (female) | | Skew between any pair of outputs Skew between normal and complement Harmonic distortions ^{5,6} 2nd harmonic 3rd harmonic Two-tone IMD ⁶ SFDR ⁶ (excluding harmonic distortions) In-band Adjacent band Amplitude flatness (at RF output connector, compensated for sin(x)/x) | 0 ps ± 7 ps (typ) 0 ps ± 3 ps (nom) tbd tbd tbd tbd tbd tbd | - 1. Unused output must be terminated with 50 Ω to GND. - With frequency response correction Termination voltage = 0 V; adjusted at 23 °C ambient temperature, amplitude increases by 0.4%/°C (typical) for ambient temperature below 23 °C - 4. Termination voltage = 0 V 5. Sample rate 92 GSa/s, output amplitude 500 mVpp(se) 6. Measured with a balun (e.g. HL9405) #### Phase noise Phase noise measured with a sample rate of 92 GSa/s, at Out 1, single-ended, 500 mV amplitude #### Run modes | Run modes | | |--|---| | Continuous | One waveform segment is continuously repeated | | Waveform granularity (the length of waveform segments must be a multiple of the granularity) | 128 samples | | Minimum waveform length | 128 samples | ## Trigger input This connector is reserved for future enhancements. ## Timing characteristics | Delay accuracy | tbd | |--|------------------| | Skew between channels 1, 2, 3, or 4 of one M8196A AWG module | 0 ps ±5 ps (typ) | | Total jitter, with pre-distortion | tbd | | Random jitter, RMS | 150 fs (typ) | ## Reference clock input A clock reference input is provided on the front panel of the M8196A and used as the clock reference for all four channels of that M8196A. | Input frequency range | 10 MHz to 17 GHz (continuous) | | |-----------------------|-------------------------------|--| | Lock range | ±1 % (typ) | | | Input level | 200 mVpp to 2 Vpp | | | Impedance | 50 Ω (nom) | | | Connector | SMA (female) | | ## Reference clock output | Source: Backplane | | |---|---| | Output frequency | $f_{out} = f_{Sa} / (32 * n)$ with n = 1 to 1024 or $f_{out} = f_{Sa} / 256$ | | Frequency accuracy | ±20 ppm | | Source: Internal | | | Output frequency | $f_{out} = f_{Sa} / (32 * n)$ with n = 1 to 1024 or $f_{out} = f_{Sa} / 256$ or $f_{out} = 100$ MHz | | Frequency accuracy | ±2 ppm | | Source: Reference Clock Input of M8196A | | | $f_{in} = 10 \text{ to } 300 \text{ MHz}$ | $f_{out} = f_{Sa} / (n * m)$ with n,m = 1 to 8 | | f _{in} = 2.570 to 2.920 GHz | $f_{out} = f_{in} / 8$ | | f _{in} = 210 MHz to 17 GHz | $f_{out} = f_{Sa} / (32 * n)$ with n = 1 to 1024 or $f_{out} = f_{Sa} / 256$ | | Output amplitude | $1_{_{\mathrm{Vpp}}}$ (typ) into 50 Ω | | Source impedance | 50Ω (nom), AC coupled | | Connector | SMA (female) | ## Internal synthesizer clock characteristics | Frequency | 82.24 to 93.4 GHz | |--|---| | Accuracy | ±2 ppm | | Resolution | 7 digits (for example: 9 kHz at 90 GHz) | | Phase noise (f _{Sa} = 92 GHz) | < -tbd dBc/Hz (typ) at 10 kHz offset, f _{out} = 1 GHz
< -tbd dBc/Hz (typ) at 10 kHz offset, f _{out} = 10 GHz | ## Download speed | | USB using SCPI | PCIe using SCPI | | |----------------|------------------|-------------------|--| | Download Speed | ~80 kSa/s (meas) | ~1.6 MSa/s (meas) | | Note: Loading 4 channels waveform memory requires 2 MSa download #### Instrument software The M8196A is controlled by a combined soft-front panel and firmware application that runs on an embedded AXIe controller or external PC or laptop. | Supported operating systems | Windows 7 (32 or 64 bit), Windows 8 (32 or 64 bit), Windows 8.1 (32 or 64 bit) | |------------------------------------|--| | Required hard disk space | 1 Gb | | Interface to M8196A hardware | PCI Express® or USB | | Application programming interfaces | SCPI, IVI-COM, LabView | #### General | Power consumption | tbd W (nom) at 92 GSa/s | |-----------------------------|--| | Operating temperature | 0 to 40 °C | | Operating humidity | 5% to 80% relative humidity, non-condensing | | Operating altitude | Up to 2000 m | | Storage temperature | −40 to +70 °C | | Stored states | User configurations and factory default | | Interface to controlling PC | PCIe (see AXIe chassis specification) | | | USB | | Form factor | 1-slot AXIe | | Dimensions (W x H x D) | 322.25 mm x 30 mm x 281.5 mm | | Weight | 3.15 kg | | Safety designed to | IEC61010-1, UL61010, CSA22.2 61010.1 tested | | EMC tested to | IEC61326 | | Warm-up time | 30 min | | Calibration interval | 2 years recommended | | Warranty | 3 years standard | | Cooling requirements | When operating the M8196A choose a location that provides at | | | least 80 mm of clearance at rear, and at least 30 mm of clearance at each side | ## **Definitions** ## Specifications The warranted performance of a calibrated instrument that has been stored for a minimum of two hours within the operating temperature range of 0 to 40 °C and after a 45-minute warm-up period. All specifications include measurement uncertainty and were created in compliance with ISO-17025 methods. ### Typical (typ) The characteristic performance, which 80% or more of manufactured instruments will meet. This data is not warranted, does not include measurement uncertainty, and is valid only at room temperature (approximately 23 °C). #### Nominal (nom) The mean or average characteristic performance, or the value of an attribute that is determined by design such as a connector type, physical dimension, or operating speed. This data is not warranted and is measured at room temperature (approximately 23 °C). #### Measured (meas) An attribute measured during development for purposes of communicating the expected performance. This data is not warranted and is measured at room temperature (approximately 23 °C). #### Accuracy Represents the traceable accuracy of a specified parameter. Includes measurement error and timebase error, and calibration source uncertainty. ## From Hewlett-Packard through Agilent to Keysight For more than 75 years, we've been helping you unlock measurement insights. Our unique combination of hardware, software and people can help you reach your next breakthrough. Unlocking measurement insights since 1939. 1939 THE FUTURE #### myKeysight #### myKeysight #### www.keysight.com/find/mykeysight A personalized view into the information most relevant to you. #### Three-Year Warranty #### www.keysight.com/find/ThreeYearWarranty Keysight's committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with a three-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products. AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group. #### Keysight Infoline #### www.keysight.com/find/service #### Keysight Infoline Keysight's insight to best in class information management. Free access to your Keysight equipment company reports and e-library. #### Keysight Channel Partners #### www.keysight.com/find/channelpartners Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience. PCI-SIG®, PCIe® and the PCI Express® are US registered trademarks and/or service marks of PCI-SIG. www.keysight.com/find/m8196a For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus #### Americas | Canada | (877) 894 4414 | |---------------|------------------| | Brazil | 55 11 3351 7010 | | Mexico | 001 800 254 2440 | | United States | (800) 829 4444 | #### Asia Pacific | Australia
China | 1 800 629 485
800 810 0189 | |--------------------|-------------------------------| | Hong Kong | 800 938 693 | | India | 1 800 11 2626 | | Japan | 0120 (421) 345 | | Korea | 080 769 0800 | | Malaysia | 1 800 888 848 | | Singapore | 1 800 375 8100 | | Taiwan | 0800 047 866 | | Other AP Countries | (65) 6375 8100 | #### Europe & Middle East | Laropo a madio Lace | | |---------------------|---------------| | Austria | 0800 001122 | | Belgium | 0800 58580 | | Finland | 0800 523252 | | France | 0805 980333 | | Germany | 0800 6270999 | | Ireland | 1800 832700 | | Israel | 1 809 343051 | | Italy | 800 599100 | | Luxembourg | +32 800 58580 | | Netherlands | 0800 0233200 | | Russia | 8800 5009286 | | Spain | 800 000154 | | Sweden | 0200 882255 | | Switzerland | 0800 805353 | | | Opt. 1 (DE) | | | Opt. 2 (FR) | | | Opt. 3 (IT) | For other unlisted countries: www.keysight.com/find/contactus (BP-12-01-15) 0800 0260637 United Kingdom www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System